
KYOTO INSTITUTE OF TECHNOLOGY

SEL@KIT

KYOTO INSTITUTE OF TECHNOLOGY

A Fault-Prone Module Detection Using a Spam Filter

Photo by Osamu Mizuno

KYOTO INSTITUTE OF TECHNOLOGY

KYOTO INSTITUTE OF TECHNOLOGY

Fault-prone Filtering

✦ Fault-prone module detection using a spam filtering
approach[1][2]
✦ Uses frequency of terms like spam e-mail filtering
✦ Constructs both faulty and non-faulty corpuses from past

modules
✦ Classifies an unknown module using two corpuses

[1] O. Mizuno and T. Kikuno, "Training on Errors Experiment to Detect Fault-Prone Software Modules by Spam Filter," In The 6th
joint meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE2007), pp. 405-414, September 2007. (Dubrovnik, Croatia)
[2] O. Mizuno, S. Ikami, S. Nakaichi, and T. Kikuno, "Spam Filter Based Approach for Finding Fault-Prone Software Modules," In
Proc. of Fourth International Workshop on Mining Software Repositories (MSR'07), p. 4, May 2007. (Minneapolis, MN, USA)

KYOTO INSTITUTE OF TECHNOLOGY

KYOTO INSTITUTE OF TECHNOLOGY

How It Works (Training)

1. Training faulty and non-faulty modules using Tokenizer.

4

Each corpus holds frequency information of each word

import, java.foo.Stateful,
import, java.foo.AroundInvoke,
@Stateful, public, class,
EmployeeBean, implements,
EmployeeServiceLocal, Employee
ServiceRemote, public,
EmployeeBean, public, void,
doAction, ...

public, class, EmployerBean,
implements,
ServiceGlobal, ServiceRemote,
public, EmployeeBean, public,
void, didAction, ...

non-faulty

faulty

CRM114
Learner

Tokenizer

tokens

faulty
corpus

non-faulty
corpus

KYOTO INSTITUTE OF TECHNOLOGY

How It Works (Prediction)

2. Calculating probability by the Bayesian filter.

5

Fault-proneness is determined by the probability and a threshold.

public, class, public,
EmployeeBean, public, void,
didAction, ...

unknown Tokenizer
CRM114
Classifier

Probability
to be faulty

non-faulty
corpus

faulty
corpus

KYOTO INSTITUTE OF TECHNOLOGY

Experiment:
Result of Prediction

Eclipse
(random sample)

Eclipse
(random sample)

PredictedPredictedEclipse
(random sample)

Eclipse
(random sample) NFP FP

Actual
not

faulty 12,249 7,093
Actual

faulty 2,972 16,243

Precision: 0.696 Recall: 0.845

Eclipse BIRT
(all modules)
Eclipse BIRT
(all modules)

PredictedPredictedEclipse BIRT
(all modules)
Eclipse BIRT
(all modules) NFP FP

Actual
not

faulty 70,349 16,011
Actual

faulty 2,039 7,501

Precision: 0.319 Recall: 0.786

KYOTO INSTITUTE OF TECHNOLOGY

Successive Prediction (TOE)
KYOTO INSTITUTE OF TECHNOLOGY

Apply software modules to
fault-prone filter in order of
construction and modification.

Only misclassified modules
are trained in corpuses.

The accuracy improves as the
number of modules increases.

KYOTO INSTITUTE OF TECHNOLOGY

Fault-proneness filtering with static code analysis

Avoid, variables, with, short,
names, like, gd, Local,
variable, ‘, gd, ‘, could, be,
declared, finalLocal,
variable, ‘, cmp, Basic,‘ ,
could, be, declared, final, …

Parameter , ‘, e, ‘, is, not,
assigned, and, could, be,
declared, final,
Parameter, ,‘, isSelected, ‘,
is, not, assigned, and, could,
be, declared, final, …

Parameter, ,‘, isSelected, ‘,
is, not, assigned, and, could,
be,...

non-faulty

faulty

PMD
or

CheckStyle

(static code
analyzer)

CRM114
Learner

Tokenizer

warning messages tokens

unknown Tokenizer

PMD
or

CheckStyle

(static code
analyzer)

CRM114
Classifier

faulty
corpus

non-faulty
corpus

Probability
to be faulty

KYOTO INSTITUTE OF TECHNOLOGY

Result

Original with PMD

Recall rises rapidly and becomes
stable earlier. But, lower precision
makes overall result worse.

KYOTO INSTITUTE OF TECHNOLOGY

Analysis of Identifiers

Photo by thenys
www.freeimages.com

KYOTO INSTITUTE OF TECHNOLOGY

http://www.sxc.hu/profile/thenys
http://www.sxc.hu/profile/thenys
http://www.freeimages.com
http://www.freeimages.com

KYOTO INSTITUTE OF TECHNOLOGY

What we did

We investigated the frequency of appearance of identifiers
in source code modules from the viewpoint of the length of
identifiers in Eclipse and NetBeans.
We modelled the relationship between the length of
identifiers and the fault-proneness.

We used the random forest for the modelling.

Data used:
Frequency of identifier’s occurrence for each file grouped by
the length of identifier + faulty status by SZZ

Kimiaki Kawamoto and Osamu Mizuno, "Do Long Identifiers Induce Faults in Software? --- a Repository
Mining Based Investigation ---," In Proc. of 22nd International Symposium on Software Reliability
Engineering (ISSRE2011), Supplemental proceedings, 3-1, November 2011. (Hiroshima, Japan)

http://se.is.kit.ac.jp/pman/pman3.cgi?A=Kimiaki%20Kawamoto
http://se.is.kit.ac.jp/pman/pman3.cgi?A=Kimiaki%20Kawamoto
http://se.is.kit.ac.jp/pman/pman3.cgi?A=Osamu%20Mizuno
http://se.is.kit.ac.jp/pman/pman3.cgi?A=Osamu%20Mizuno
http://se.is.kit.ac.jp/pman/pman3.cgi?D=648
http://se.is.kit.ac.jp/pman/pman3.cgi?D=648
http://se.is.kit.ac.jp/pman/pman3.cgi?D=648
http://se.is.kit.ac.jp/pman/pman3.cgi?D=648

KYOTO INSTITUTE OF TECHNOLOGY

Results of analysis

Lengths of 3,
4, and 7 have
impact for
fault-
proneness.

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Tokenize

Calculate length

Model building
and prediction

Faulty
modules

Non-
faulty

modules Extract identifiers

Count up for each length

RandomForest

Fig. 1 A flow chart of experiments

Table 2 Evaluation of prediction (average of 10 times)

Accuracy Precision Recall F-Measure
Eclipse 0.888 0.866 0.913 0.889

Netbeans 0.850 0.765 0.865 0.812

Table 3 Top 10: Mean Decrease Gini (average of 10 times)

Eclipse Netbeans
Rank Length Mean decrease Gini Length Mean decrease Gini

1 7 7767.47 3 7505.82
2 4 6501.14 4 6537.75
3 8 6146.32 10 6505.30
4 3 5643.99 7 6187.07
5 13 5378.26 6 6109.80
6 6 5073.66 11 5342.15
7 9 4883.39 9 5176.19
8 5 4664.90 8 5156.06
9 11 4200.25 14 4900.95
10 14 4140.85 13 4653.10

module. In this study, a software module means a java class
file. To Determine faulty status of modules using the SZZ
algorithm [4].

In both faulty and non-faulty modules, average length
of identifiers is almost equal. It is thus difficult to predict the
faulty modules using the length of identifiers only. In this
study, we utilize the distribution of the length of identifiers
for each module.

3.2 Fault-prone prediction model

In order to find the answer to the RQ1, we built a fault-prone
module prediction model.

Figure 1 shows a flow chart of experiments. We ex-
tract source code modules for both faulty and non-faulty.
For each module, we count up the number of occurrences of
identifiers by length. Finally, we build a model to determine
faulty modules and predict using the random forest [5] of a
machine learning technique from the number of occurrences
of the identifiers.

3.3 Results

Table 2 summarizes the result of prediction using evaluation
measures such as accuracy, precision, recall, and F-measure.
From Table 2, we can see that predictions are done with
about 85% accuracy in both Eclipse and Netbeans. How-
ever, we can also see that the precision is relatively low in

Netbeans.
Table 3 shows the ranking of mean decrease Gini for

each length of identifiers in both Eclipse and Netbeans. The
mean decrease Gini is a measure to evaluate the importance
of variables used in the random forests. The higher mean
decrease Gini value is, the more important variable is. From
Table 3, identifiers with shorter length have higher mean de-
crease Gini values.

4. Discussion

4.1 Fault-prone prediction by length of identifiers

First, we intend to find the answer of the research question
RQ1. As shown in Table 2, the result of prediction shows
that the length of identifiers can be a measure for fault-prone
module prediction. We can thus conclude that the answer of
RQ1 is “yes” and it is confirmed at a certain degree.

4.2 Particular length of identifiers

Next, we intend to find the answer of the research question
RQ2. From Table 3, we can see that there are length of 3, 4
and 7 in top 4 of ranking of mean decrease Gini value in both
Eclipse and Nebeans. We guess that these lengths (3, 4 and
7) of identifiers are keys of fault-prone module prediction.
We can thus conclude that the answer of RQ2 is “yes”.

5. Conclusions

In this study, we investigated the relationship between the
length of identifiers and software faults in a software mod-
ule. The results showed that there is a certain relationship
between the length of identifier and existence of software
faults. We should investigate the relationship between the
length of identifiers and existence of faults in software mod-
ules more precisely.

Acknowledgment

This work is partially supported by KAKENHI, Grant-in-
Aid for Scientific Research(B), (23300009).

References

[1] F. Deissenboeck and M. Pizka, “Concise and consistent naming,”
Software Quality Control, vol.14, pp.261–282, September 2006.

[2] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Relating identi-
fier naming flaws and code quality: an empirical study,” Proc. of the
Working Conf. on Reverse Engineering, pp.31–35, IEEE Computer
Society, 2009.

[3] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name? a
study of identifiers,” Proceedings of the 14th IEEE International Con-
ference on Program Comprehension, Washington, DC, USA, pp.3–12,
IEEE Computer Society, 2006.

[4] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes in-
duce fixes?,” Proceedings of the 2005 international workshop on Min-
ing software repositories, New York, NY, USA, pp.1–5, ACM, 2005.

[5] L. Breiman, “Random forests,” Machine Learning, vol.45, pp.5–32,
October 2001.

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Tokenize

Calculate length

Model building
and prediction

Faulty
modules

Non-
faulty

modules Extract identifiers

Count up for each length

RandomForest

Fig. 1 A flow chart of experiments

Table 2 Evaluation of prediction (average of 10 times)

Accuracy Precision Recall F-Measure
Eclipse 0.888 0.866 0.913 0.889

Netbeans 0.850 0.765 0.865 0.812

Table 3 Top 10: Mean Decrease Gini (average of 10 times)

Eclipse Netbeans
Rank Length Mean decrease Gini Length Mean decrease Gini

1 7 7767.47 3 7505.82
2 4 6501.14 4 6537.75
3 8 6146.32 10 6505.30
4 3 5643.99 7 6187.07
5 13 5378.26 6 6109.80
6 6 5073.66 11 5342.15
7 9 4883.39 9 5176.19
8 5 4664.90 8 5156.06
9 11 4200.25 14 4900.95
10 14 4140.85 13 4653.10

module. In this study, a software module means a java class
file. To Determine faulty status of modules using the SZZ
algorithm [4].

In both faulty and non-faulty modules, average length
of identifiers is almost equal. It is thus difficult to predict the
faulty modules using the length of identifiers only. In this
study, we utilize the distribution of the length of identifiers
for each module.

3.2 Fault-prone prediction model

In order to find the answer to the RQ1, we built a fault-prone
module prediction model.

Figure 1 shows a flow chart of experiments. We ex-
tract source code modules for both faulty and non-faulty.
For each module, we count up the number of occurrences of
identifiers by length. Finally, we build a model to determine
faulty modules and predict using the random forest [5] of a
machine learning technique from the number of occurrences
of the identifiers.

3.3 Results

Table 2 summarizes the result of prediction using evaluation
measures such as accuracy, precision, recall, and F-measure.
From Table 2, we can see that predictions are done with
about 85% accuracy in both Eclipse and Netbeans. How-
ever, we can also see that the precision is relatively low in

Netbeans.
Table 3 shows the ranking of mean decrease Gini for

each length of identifiers in both Eclipse and Netbeans. The
mean decrease Gini is a measure to evaluate the importance
of variables used in the random forests. The higher mean
decrease Gini value is, the more important variable is. From
Table 3, identifiers with shorter length have higher mean de-
crease Gini values.

4. Discussion

4.1 Fault-prone prediction by length of identifiers

First, we intend to find the answer of the research question
RQ1. As shown in Table 2, the result of prediction shows
that the length of identifiers can be a measure for fault-prone
module prediction. We can thus conclude that the answer of
RQ1 is “yes” and it is confirmed at a certain degree.

4.2 Particular length of identifiers

Next, we intend to find the answer of the research question
RQ2. From Table 3, we can see that there are length of 3, 4
and 7 in top 4 of ranking of mean decrease Gini value in both
Eclipse and Nebeans. We guess that these lengths (3, 4 and
7) of identifiers are keys of fault-prone module prediction.
We can thus conclude that the answer of RQ2 is “yes”.

5. Conclusions

In this study, we investigated the relationship between the
length of identifiers and software faults in a software mod-
ule. The results showed that there is a certain relationship
between the length of identifier and existence of software
faults. We should investigate the relationship between the
length of identifiers and existence of faults in software mod-
ules more precisely.

Acknowledgment

This work is partially supported by KAKENHI, Grant-in-
Aid for Scientific Research(B), (23300009).

References

[1] F. Deissenboeck and M. Pizka, “Concise and consistent naming,”
Software Quality Control, vol.14, pp.261–282, September 2006.

[2] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Relating identi-
fier naming flaws and code quality: an empirical study,” Proc. of the
Working Conf. on Reverse Engineering, pp.31–35, IEEE Computer
Society, 2009.

[3] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name? a
study of identifiers,” Proceedings of the 14th IEEE International Con-
ference on Program Comprehension, Washington, DC, USA, pp.3–12,
IEEE Computer Society, 2006.

[4] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes in-
duce fixes?,” Proceedings of the 2005 international workshop on Min-
ing software repositories, New York, NY, USA, pp.1–5, ACM, 2005.

[5] L. Breiman, “Random forests,” Machine Learning, vol.45, pp.5–32,
October 2001.

KYOTO INSTITUTE OF TECHNOLOGY

[FYI] The longest identifiers

In Eclipse: 237 characters, appears 26 times
WorkingDirectoryStatusHandler_Eclipse_is_not_able_to_set_the_working_directory_
specified_by_the_program_being_launched_as_the_current_runtime_does_not_sup
port_working_directories__nContinue_launch_without_setting_the_working_director
y__2

In Netbeans: 210 characters, appears 76 times
getCustomResourceOrExternalJndiResourceOrJdbcResourceOrMailResourceOrPer
sistenceManagerFactoryResourceOrAdminObjectResourceOrConnectorResourceOr
ResourceAdapterConfigOrJdbcConnectionPoolOrConnectorConnectionPool

Mining code review repositories
Photo by Paul Barker
(www.freeimages.com)

Do code review activities
become more productive
in Gerrit-based projects
as a result of evolution?

14

http://www.freeimages.com
http://www.freeimages.com

KYOTO INSTITUTE OF TECHNOLOGY

Data collection tool (Developed)

Integrated crawling and mining tool [1].
Developed by Junwei Liang (a master course student)

[1] JunWei Liang and Osamu Mizuno, "Analyzing Involvements of Reviewers Through Mining a
Code Review Repository," In Proc. of the Joint Conference of the 21th International Workshop on
Software Measurement and the 6th International Conference on Software Process and Product
Measurement (IWSM/MENSURA2011), pp. 126-132, November 2011. (Nara, Japan)

http://se.is.kit.ac.jp/pman/pman3.cgi?A=JunWei%20Liang
http://se.is.kit.ac.jp/pman/pman3.cgi?A=JunWei%20Liang
http://se.is.kit.ac.jp/pman/pman3.cgi?A=Osamu%20Mizuno
http://se.is.kit.ac.jp/pman/pman3.cgi?A=Osamu%20Mizuno
http://se.is.kit.ac.jp/pman/pman3.cgi?D=642
http://se.is.kit.ac.jp/pman/pman3.cgi?D=642
http://se.is.kit.ac.jp/pman/pman3.cgi?D=642
http://se.is.kit.ac.jp/pman/pman3.cgi?D=642

Ratio of activities in review process

0.00

0.25

0.50

0.75

1.00

(Rietveld) Chromium

(Rietveld) GWT
(Gerrit) Android

(Gerrit) Qt

Project

co
un
t

Activity
Create

Inline Comment

LGTM/Label

Message

Ratio of Label
activities increases in
Gerrit-based projects.

16

Discussion time and
approval

✦ In Rietveld, the
number of LGTM is
proportional to the
discussion time.

✦ In Gerrit, +2 labeled
issues quickly finish
discussion.

(Rietveld) Chromium (Rietveld) GWT

1e-01

1e+01

1e+03

0 1 2 3 >4 0 1 2 3 >4
Number of LGTM messages

D
is

cu
ss

io
n

tim
e

(h
ou

r)

(Gerrit) Android (Gerrit) Qt

1e-01

1e+01

1e+03

-2 -1 0 +1 +2 -2 -1 0 +1 +2
Max label value

D
is

cu
ss

io
n

tim
e

(h
ou

r)

NLGT M
i

L

max

i

Photo by omzn
17

