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Fault-prone Filtering

✦ Fault-prone module detection using a spam filtering 
approach[1][2]
✦ Uses frequency of terms like spam e-mail filtering
✦ Constructs both faulty and non-faulty corpuses from past 

modules
✦ Classifies an unknown module using two corpuses

[1] O. Mizuno and T. Kikuno, "Training on Errors Experiment to Detect Fault-Prone Software Modules by Spam Filter," In The 6th 
joint meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of 
Software Engineering (ESEC/FSE2007), pp. 405-414, September 2007. (Dubrovnik, Croatia)
[2] O. Mizuno, S. Ikami, S. Nakaichi, and T. Kikuno, "Spam Filter Based Approach for Finding Fault-Prone Software Modules," In 
Proc. of Fourth International Workshop on Mining Software Repositories (MSR'07), p. 4, May 2007. (Minneapolis, MN, USA)
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How It Works (Training)

1. Training faulty and non-faulty modules using Tokenizer.
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Each corpus holds frequency information of each word

import, java.foo.Stateful, 
import, java.foo.AroundInvoke, 
@Stateful, public, class, 
EmployeeBean, implements, 
EmployeeServiceLocal, Employee
ServiceRemote, public, 
EmployeeBean, public, void, 
doAction, ...

public, class, EmployerBean, 
implements, 
ServiceGlobal, ServiceRemote, 
public, EmployeeBean, public, 
void, didAction, ...
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How It Works (Prediction)

2. Calculating probability by the Bayesian filter.
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Fault-proneness is determined by the probability and a threshold.

public, class, public, 
EmployeeBean, public, void, 
didAction, ...
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Experiment:
Result of Prediction

Eclipse
(random sample)

Eclipse
(random sample)

PredictedPredictedEclipse
(random sample)

Eclipse
(random sample) NFP FP

Actual
not 

faulty 12,249 7,093
Actual

faulty 2,972 16,243

Precision: 0.696  Recall: 0.845

Eclipse BIRT
(all modules)
Eclipse BIRT
(all modules)

PredictedPredictedEclipse BIRT
(all modules)
Eclipse BIRT
(all modules) NFP FP

Actual
not 

faulty 70,349 16,011
Actual

faulty 2,039 7,501

Precision: 0.319  Recall: 0.786
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Successive Prediction (TOE)
KYOTO INSTITUTE OF TECHNOLOGY

Apply software modules to 
fault-prone filter in order of 
construction and modification.

Only misclassified modules 
are trained in corpuses.

The accuracy improves as the 
number of modules increases.
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Fault-proneness filtering with static code analysis

Avoid, variables, with, short, 
names, like, gd, Local, 
variable, ‘, gd, ‘, could, be, 
declared, finalLocal, 
variable, ‘, cmp, Basic,‘ , 
could, be, declared, final, …

Parameter , ‘, e, ‘, is, not, 
assigned, and,  could, be, 
declared, final, 
Parameter, ,‘, isSelected, ‘, 
is, not, assigned, and, could, 
be, declared, final, …

Parameter, ,‘, isSelected, ‘, 
is, not, assigned, and, could, 
be,...

non-faulty

faulty

PMD
or

CheckStyle

(static code 
analyzer)
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Result

Original with PMD

Recall rises rapidly and becomes 
stable earlier. But, lower precision 
makes overall result worse.



KYOTO INSTITUTE OF TECHNOLOGY

Analysis of Identifiers 
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What we did

We investigated the frequency of appearance of identifiers 
in source code modules from the viewpoint of the length of 
identifiers in Eclipse and NetBeans.
We modelled the relationship between the length of 
identifiers and the fault-proneness.

We used the random forest for the modelling.

Data used:
Frequency of identifier’s occurrence for each file grouped by 
the length of identifier + faulty status by SZZ

Kimiaki Kawamoto and Osamu Mizuno, "Do Long Identifiers Induce Faults in Software? --- a Repository 
Mining Based Investigation ---," In Proc. of 22nd International Symposium on Software Reliability 
Engineering (ISSRE2011), Supplemental proceedings, 3-1, November 2011. (Hiroshima, Japan)

http://se.is.kit.ac.jp/pman/pman3.cgi?A=Kimiaki%20Kawamoto
http://se.is.kit.ac.jp/pman/pman3.cgi?A=Kimiaki%20Kawamoto
http://se.is.kit.ac.jp/pman/pman3.cgi?A=Osamu%20Mizuno
http://se.is.kit.ac.jp/pman/pman3.cgi?A=Osamu%20Mizuno
http://se.is.kit.ac.jp/pman/pman3.cgi?D=648
http://se.is.kit.ac.jp/pman/pman3.cgi?D=648
http://se.is.kit.ac.jp/pman/pman3.cgi?D=648
http://se.is.kit.ac.jp/pman/pman3.cgi?D=648
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Results of analysis

Lengths of 3, 
4, and 7 have 
impact for 
fault-
proneness.
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Fig. 1 A flow chart of experiments

Table 2 Evaluation of prediction (average of 10 times)

Accuracy Precision Recall F-Measure
Eclipse 0.888 0.866 0.913 0.889

Netbeans 0.850 0.765 0.865 0.812

Table 3 Top 10: Mean Decrease Gini (average of 10 times)

Eclipse Netbeans
Rank Length Mean decrease Gini Length Mean decrease Gini

1 7 7767.47 3 7505.82
2 4 6501.14 4 6537.75
3 8 6146.32 10 6505.30
4 3 5643.99 7 6187.07
5 13 5378.26 6 6109.80
6 6 5073.66 11 5342.15
7 9 4883.39 9 5176.19
8 5 4664.90 8 5156.06
9 11 4200.25 14 4900.95
10 14 4140.85 13 4653.10

module. In this study, a software module means a java class
file. To Determine faulty status of modules using the SZZ
algorithm [4].

In both faulty and non-faulty modules, average length
of identifiers is almost equal. It is thus difficult to predict the
faulty modules using the length of identifiers only. In this
study, we utilize the distribution of the length of identifiers
for each module.

3.2 Fault-prone prediction model

In order to find the answer to the RQ1, we built a fault-prone
module prediction model.

Figure 1 shows a flow chart of experiments. We ex-
tract source code modules for both faulty and non-faulty.
For each module, we count up the number of occurrences of
identifiers by length. Finally, we build a model to determine
faulty modules and predict using the random forest [5] of a
machine learning technique from the number of occurrences
of the identifiers.

3.3 Results

Table 2 summarizes the result of prediction using evaluation
measures such as accuracy, precision, recall, and F-measure.
From Table 2, we can see that predictions are done with
about 85% accuracy in both Eclipse and Netbeans. How-
ever, we can also see that the precision is relatively low in

Netbeans.
Table 3 shows the ranking of mean decrease Gini for

each length of identifiers in both Eclipse and Netbeans. The
mean decrease Gini is a measure to evaluate the importance
of variables used in the random forests. The higher mean
decrease Gini value is, the more important variable is. From
Table 3, identifiers with shorter length have higher mean de-
crease Gini values.

4. Discussion

4.1 Fault-prone prediction by length of identifiers

First, we intend to find the answer of the research question
RQ1. As shown in Table 2, the result of prediction shows
that the length of identifiers can be a measure for fault-prone
module prediction. We can thus conclude that the answer of
RQ1 is “yes” and it is confirmed at a certain degree.

4.2 Particular length of identifiers

Next, we intend to find the answer of the research question
RQ2. From Table 3, we can see that there are length of 3, 4
and 7 in top 4 of ranking of mean decrease Gini value in both
Eclipse and Nebeans. We guess that these lengths (3, 4 and
7) of identifiers are keys of fault-prone module prediction.
We can thus conclude that the answer of RQ2 is “yes”.

5. Conclusions

In this study, we investigated the relationship between the
length of identifiers and software faults in a software mod-
ule. The results showed that there is a certain relationship
between the length of identifier and existence of software
faults. We should investigate the relationship between the
length of identifiers and existence of faults in software mod-
ules more precisely.
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of identifiers is almost equal. It is thus difficult to predict the
faulty modules using the length of identifiers only. In this
study, we utilize the distribution of the length of identifiers
for each module.

3.2 Fault-prone prediction model

In order to find the answer to the RQ1, we built a fault-prone
module prediction model.

Figure 1 shows a flow chart of experiments. We ex-
tract source code modules for both faulty and non-faulty.
For each module, we count up the number of occurrences of
identifiers by length. Finally, we build a model to determine
faulty modules and predict using the random forest [5] of a
machine learning technique from the number of occurrences
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3.3 Results

Table 2 summarizes the result of prediction using evaluation
measures such as accuracy, precision, recall, and F-measure.
From Table 2, we can see that predictions are done with
about 85% accuracy in both Eclipse and Netbeans. How-
ever, we can also see that the precision is relatively low in
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mean decrease Gini is a measure to evaluate the importance
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decrease Gini value is, the more important variable is. From
Table 3, identifiers with shorter length have higher mean de-
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4. Discussion

4.1 Fault-prone prediction by length of identifiers

First, we intend to find the answer of the research question
RQ1. As shown in Table 2, the result of prediction shows
that the length of identifiers can be a measure for fault-prone
module prediction. We can thus conclude that the answer of
RQ1 is “yes” and it is confirmed at a certain degree.

4.2 Particular length of identifiers

Next, we intend to find the answer of the research question
RQ2. From Table 3, we can see that there are length of 3, 4
and 7 in top 4 of ranking of mean decrease Gini value in both
Eclipse and Nebeans. We guess that these lengths (3, 4 and
7) of identifiers are keys of fault-prone module prediction.
We can thus conclude that the answer of RQ2 is “yes”.

5. Conclusions

In this study, we investigated the relationship between the
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ule. The results showed that there is a certain relationship
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[FYI] The longest identifiers 

In Eclipse: 237 characters, appears 26 times
WorkingDirectoryStatusHandler_Eclipse_is_not_able_to_set_the_working_directory_
specified_by_the_program_being_launched_as_the_current_runtime_does_not_sup
port_working_directories__nContinue_launch_without_setting_the_working_director
y__2

In Netbeans: 210 characters, appears 76 times
getCustomResourceOrExternalJndiResourceOrJdbcResourceOrMailResourceOrPer
sistenceManagerFactoryResourceOrAdminObjectResourceOrConnectorResourceOr
ResourceAdapterConfigOrJdbcConnectionPoolOrConnectorConnectionPool



Mining code review repositories
Photo by Paul Barker 
(www.freeimages.com)

Do code review activities 
become more productive 
in Gerrit-based projects 
as a result of evolution?
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Data collection tool (Developed)

Integrated crawling and mining tool [1].
Developed by Junwei Liang (a master course student)

[1] JunWei Liang and Osamu Mizuno, "Analyzing Involvements of Reviewers Through Mining a 
Code Review Repository," In Proc. of the Joint Conference of the 21th International Workshop on 
Software Measurement and the 6th International Conference on Software Process and Product 
Measurement (IWSM/MENSURA2011), pp. 126-132, November 2011. (Nara, Japan)
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Ratio of activities in review process
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Ratio of Label 
activities increases in 
Gerrit-based projects.

16



Discussion time and 
approval 

✦ In Rietveld, the 
number of LGTM is 
proportional to the 
discussion time.

✦ In Gerrit, +2 labeled 
issues quickly finish 
discussion.
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